NTT 模数表

$g$ 是 $\mod{r2^k+1}$ 的原根 ,$p=r2^k+1.$

$r$ $k$ $g$
$3$ $1$ $1$ $2$
$5$ $1$ $2$ $2$
$17$ $1$ $4$ $3$
$97$ $3$ $5$ $5$
$193$ $3$ $6$ $5$
$257$ $1$ $8$ $3$
$7681$ $15$ $9$ $17$
$12289$ $3$ $12$ $11$
$40961$ $5$ $13$ $3$
$65537$ $1$ $16$ $3$
$786433$ $3$ $18$ $10$
$5767169$ $11$ $19$ $3$
$7340033$ $7$ $20$ $3$
$23068673$ $11$ $21$ $3$
$104857601$ $25$ $22$ $3$
$167772161$ $5$ $25$ $3$
$469762049$ $7$ $26$ $3$
$998244353$ $119$ $23$ $3$
$1004535809$ $479$ $21$ $3$
$2013265921$ $15$ $27$ $31$
$2281701377$ $17$ $27$ $3$
$3221225473$ $3$ $30$ $5$
$75161927681$ $35$ $31$ $3$
$77309411329$ $9$ $33$ $7$
$206158430209$ $3$ $36$ $22$
$2061584302081$ $15$ $37$ $7$
$2748779069441$ $5$ $39$ $3$
$6597069766657$ $3$ $41$ $5$
$39582418599937$ $9$ $42$ $5$
$79164837199873$ $9$ $43$ $5$
$263882790666241$ $15$ $44$ $7$
$1231453023109121$ $35$ $45$ $3$
$1337006139375617$ $19$ $46$ $3$
$3799912185593857$ $27$ $47$ $5$
$4222124650659841$ $15$ $48$ $19$
$7881299347898369$ $7$ $50$ $6$
$31525197391593473$ $7$ $52$ $3$
$180143985094819841$ $5$ $55$ $6$
$1945555039024054273$ $27$ $56$ $5$
$4179340454199820289$ $29$ $57$ $3$